Energy Sources and Communication Protocols for Nano-Devices

Peter J. Burke, Chris Rutherglen
Department of Electrical Engineering and Computer Science
University of California, Irvine
Funding: ARO, ONR, NSF, DARPA
Outline

- Vision of wirelessly integrated nanosystems
- Case study: Nanotube radio
- Microchip RFID
- RF Nanotube antennae
- The future
Wirelessly interconnected nanosystems

Frequency -> channel -> interconnect

Long nanotube antennas, each resonant at a different frequency.

Integrated Nanosystem
(Nanowires, Nanotubes, Self-assembled DNA, etc.)

Peter J. Burke, Shengdong Li, Zhen Yu
"Quantitative theory of nanowire and nanotube antenna performance"
Case Study: Nanotube Radio

See also: J. Rogers, et al, preprint, UIUC, AM radio demonstration
Nanotube Radio
Protocols that will work

- AM
- FM
- Spread spectrum (CDMA, etc.)
- Protocol is not limiting factor
Energy source: “Rectenna”

Antenna

Diode

Low pass filter

DC source from RF power

“Energy Sources and Communication Protocols for Nano-Devices”
Nanotechnology Solutions for Long-term Implantable Devices
Houston, TX
October 23, 2007
© Peter J. Burke, 2007
RFID Chips
Hitachi μ-chip

Mituo Usami, Hisao Tanaba, Akira Sato, Isao Sakama, Yukio Maki, Toshiaki Iwamatsu, Takashi Ipposhi, Yasuo Inoue, “A 0.05 x 0.05 mm² RFID Chip with Easily Scaled-Down ID-Memory”, ISSCC, 2007

"Energy Sources and Communication Protocols for Nano-Devices"
Nanotechnology Solutions for Long-term Implantable Devices
Houston, TX October 23, 2007 © Peter J. Burke, 2007
Small RFID Chip Trend

Mituo Usami, Hisao Tanaba, Akira Sato, Isao Sakama, Yukio Maki, Toshiaki Iwamatsu, Takashi Ipposhi, Yasuo Inoue, “A 0.05 x 0.05 mm² RFID Chip with Easily Scaled-Down ID-Memory”, ISSCC, 2007

“Energy Sources and Communication Protocols for Nano-Devices”
Nanotechnology Solutions for Long-term Implantable Devices
Houston, TX October 23, 2007 © Peter J. Burke, 2007
RFID On-chip Antenna (OCA)

1 mW available DC power for 1 W @ 2.45 GHz

Nano-RF Antennas?
Ideal antenna

- Z_{input} close to 50 Ω
- Resistive losses small
- Radiation pattern sharp
- Frequency well controlled and characterized
- Broad band
- Physically small
- Cheap
- Integratable with multiple systems
Impedances

\[\frac{V_{dc}}{I_{dc}} = \text{???} \]

Resistance quantum

\[R_Q \equiv \frac{h}{e^2} = 25 \text{ } k\Omega \]

Realm of ac integrated nanosystems

Characteristic impedance of free space

\[Z_0 \equiv \sqrt{\frac{\mu_0}{\varepsilon_0}} = 377 \text{ } \Omega \]

\[\alpha \equiv \frac{Z_0}{R_Q} = 2 \cdot \frac{1}{137} \]

\[\frac{E_{RF}}{H_{RF}} = \text{???} \quad \frac{E_{\text{optical}}}{H_{\text{optical}}} = \text{???} \]
Nano-antenna vs. classical antenna

NT antenna

Wire antenna

λ / 2

λ / 2

λ

Peter J. Burke, Shengdong Li, Zhen Yu
"Quantitative theory of nanowire and nanotube antenna performance"
Radiation Resistance

Classical short antenna of length \(l \):

\[
R_{rad} = 80\pi^2 \left(\frac{l}{\lambda} \right)^2
\]

\[
R_{rad} = 80\pi^2 (0.01)^2 = 0.08 \Omega
\]

Efficiency \(\sim R_{DC\ nanotube}/R_{\text{radiation}} \)

\(\Rightarrow \) -90 dB
Rigorous, self consistent theory

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 53, NO. 11, NOVEMBER 2005

Fundamental Transmitting Properties of Carbon Nanotube Antennas

G. W. Hanson, Senior Member, IEEE

“Energy Sources and Communication Protocols for Nano-Devices”
Nanotechnology Solutions for Long-term Implantable Devices
Houston, TX October 23, 2007 © Peter J. Burke, 2007
Conclusions

- Power: Can come from external RF
- Protocol: Any can work
- Technology: Exists for microchips
- Antennas: Main challenge to miniaturize
- Integrated nanosystems: Still a dream, not yet reality

http://news.bbc.co.uk/2/hi/science/nature/7050477.stm